Manuscript Submission

Title page


Title Page

The title page should include:
  • The name(s) of the author(s)
  • A concise and informative title
  • The affiliation(s) and address(es) of the author(s)
  • The e-mail address, and telephone number(s) of the corresponding author
  • If available, the 16-digit ORCID of the author(s)


Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.


Please provide 4 to 6 keywords which can be used for indexing purposes.



Text Formatting

Manuscripts should be submitted in Word.
  • Use a normal, plain font (e.g., 10-point Times Roman) for text.
  • Use italics for emphasis.
  • Use the automatic page numbering function to number the pages.
  • Do not use field functions.
  • Use tab stops or other commands for indents, not the space bar.
  • Use the table function, not spreadsheets, to make tables.
  • Use the equation editor or MathType for equations.
  • Save your file in docx format (Word 2007 or higher) or doc format (older Word versions).


Acknowledgments of people, grants, funds, etc. should be placed in a separate section on the title page. The names of funding organizations should be written in full.



[1] ชื่อ1, ชื่อ2 และ ชื่อ3, ชื่อบทความ, สำนักพิมพ์. ฉบับที่(ปี), หน้า.
Manuscripts with mathematical content can also be submitted in LaTeX.


% font ==============================================================
\newfontfamily{\thaifont}{Angsana New}
\newfontfamily{\thaifontsf}{Angsana New}


% line break for Thai language ----------------------------------
\XeTeXlinebreaklocale "th"
\XeTeXlinebreakskip = 0pt plus 1pt


% ----------------------------------------------------------------
%\setlength{\evensidemargin}{0.47in} \setlength{\textwidth}{6.5in}
%\setlength{\topmargin}{-0.47in} \setlength{\parindent}{0.3in}
% \setlength{\hoffset}{-1cm}


%Set height of the header
\setlength{\headheight}{0.26in} \setlength{\parindent}{1cm}
% Set vertical distance between the header and the text
% Set height of the text

% THEOREMS -------------------------------------------------------
\theoremstyle{plain} \theoremstyle{definition}
\theoremstyle{remark} \numberwithin{subsection}{section}
\numberwithin{equation}{section} \numberwithin{figure}{section}


% MATH -------------------------------------------------------------------
\newcommand{\bR}{{\bf R}}
\newcommand{\bC}{{\bf C}}
\newcommand{\bZ}{{\bf Z}}
\newcommand{\bN}{{\bf N}}
\newcommand{\bQ}{{\bf Q}}
\newcommand{\bK}{{\bf K}}
\newcommand{\bI}{{\bf I}}
\newcommand{\bv}{{\bf v}}
\newcommand{\bV}{{\bf V}}
\newcommand{\cF}{{\mathcal F}}
\newcommand{\cA}{{\mathcal A}}
\newcommand{\cB}{{\mathcal B}}
\newcommand{\cC}{{\mathcal C}}
\newcommand{\cL}{{\mathcal L}}
\newcommand{\cX}{{\mathcal X}}
\newcommand{\cY}{{\mathcal Y}}
\newcommand{\cZ}{{\mathcal Z}}


%%% Begining of the thesis
\thispagestyle{empty}\pagestyle{myheadings} \markboth{ \rm \small{\textcolor[rgb]{1.00,0.00,0.00}{R}ajabhat \textcolor[rgb]{1.00,0.00,0.00}{M}ath. \textcolor[rgb]{1.00,0.00,0.00}{J.}
3(20xx)/ Author1 and Author2}} {\rm {\textcolor[rgb]{0.00,0.25,0.50}{title running head}}}
\noindent{\large{\bf Rajabhat Mathematics Journal (20xx) Vol. xx, xx - xx}}

\vspace{1mm} \hfill\small ISSN xxxx-xxxx
{\Large\bf TITLE}\\
\underline{Author1 and Author2}\\
Address of Authors \\

\par The paper must have abstract.
{\bf $^*$Corresponding Author:} Email\\
{\bf Keyword­:} xxxxxx, xxxxxx, \\
\setmainfont{Angsana New}
\hskip1cm This is the text of the introduction \cite{1}, \cite{2}, \cite{3}, \cite{1, 2, 3}

\hskip 0.8cm Preliminary notes, materials and methods used in the paper.
\begin{rem}\label{remark1} We can easily check the following:
\par $(i)$ If $a,b \in \Bbb R , 0\leq a \leq b \mbox{ and } z_{1} \precsim z_{2} \mbox{ then } az_{1}\precsim bz_{2},\forall z_{1},z_{2}\in \Bbb C.$
\par $(ii)$ $0 \precsim z_{1} \precnsim z_{2} \Rightarrow |z_{1}| < |z_{2}|.$
\par $(iii)$ $z_{1} \precsim z_{2} \mbox{ and } z_{2} \prec z_{3} \Rightarrow z_{1} \prec z_{3}.$

d(Tx,Ty)\precsim \alpha d(x,Tx)+d(y,Ty),
for all $x,y \in X$.

\begin{defn}\label{defnGCM} Let $X$ be a nonempty set, a mapping $D:X \times X \rightarrow \Bbb C$ is called a generalized conplex value metric space if it satisfies the following condition ...

\begin{ex} Let $X=[0,1]$ and let $D:X\times X \rightarrow \Bbb C$ be the mapping define by for any $x,y \in X$
D(x,y)=(x+y)i;x \neq 0 \mbox{ and } y \neq 0\\

\section{Main Results}
\hskip 0.8cm
\begin{prop} Let $X$ be a nonempty set and $D:X\times X \rightarrow \Bbb C$.

\begin{thm} Let $(X, D)$ be a complete generalized complex value metric space,


\hskip 0.8cm The auther would like to thank...

\bibitem{1} A. Azam,F. Brain and M. Khan, \textbf{ Common fixed point theorems in complex valued metric space. }Numer.Funct.Anal. Optim. 32(3)(2011), 243-253.
\bibitem{2} S. Banach, \textbf{ Sur operations dams les ensembles abstraits et leur application aus equation integral.}Fund. Math. 3(1922), 133-181.
\bibitem{3} Y. Elkouch and E. M. Morhrani, \textbf{ On some fixed point theorem in generalized metric space.}Fixed Point Theory Applications. (2017). Doi 10.1186/s13663-017-0617-9.