Article Submissions

Submit to Email : rmj@uru.ac.th  

Manuscript Submission

Title 

The title page should include:

  • The name(s) of the author(s)
  • The affiliation(s) and address(es) of the author(s)
  • The e-mail address, and telephone number(s) of the corresponding author

Abstract 

Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.
 

Keywords

Please provide 4 to 6 keywords which can be used for indexing purposes.
 

Text

 Text Formatting
Manuscripts should be submitted in Word.
 
  • Introduction
  • Preliminaries 
  • Main Results

Acknowledgments

Acknowledgments of people, grants, funds, etc. should be placed in a separate section on the title page. The names of funding organizations should be written in full.

 

References

 
 
[1] Name 1, Name 2 and Name 3, Title of article, Journal. Vol.(no.), year, page.
 
 

Latex Template 

  
Manuscripts with mathematical content can also be submitted in LaTeX.(For TeXstudio)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

\documentclass[b5paper,11pt,twoside]{article}
\usepackage[english,thai]{babel}
\usepackage{amsmath,amssymb,amsthm,latexsym,pifont,mathrsfs}
\usepackage[colorlinks,urlcolor=red]{hyperref}
\usepackage{graphicx}
% font ==============================================================
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Scale=1.4}
\usepackage{xltxtra}
\newfontfamily{\thaifont}{Angsana New}
\newfontfamily{\thaifontsf}{Angsana New}

\usepackage{polyglossia}
\setdefaultlanguage{english}

% line break for Thai language ----------------------------------
\XeTeXlinebreaklocale "th"
\XeTeXlinebreakskip = 0pt plus 1pt

\usepackage{xunicode}

\renewcommand{\theequation}{\thesection.\arabic{equation}}
\newcommand{\Section}[1]{\section{#1}\setcounter{equation}{0}}
% ----------------------------------------------------------------
\pagestyle{plain}


\usepackage[top=1in,bottom=1in,left=1.in,right=0.5in]{geometry}

%Set height of the header
\setlength{\headheight}{0.26in} \setlength{\parindent}{1cm}
% Set vertical distance between the header and the text
\setlength{\headsep}{0.3in}

% THEOREMS -------------------------------------------------------
\theoremstyle{plain} \theoremstyle{definition}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}{Lemma}[section]
\newtheorem{ex}{Example}[section]
\newtheorem{nota}{Notation}[section]
\newtheorem{prop}{Proposition}[section]
\newtheorem{defn}{Definition}[section]
\newtheorem{cor}{Corollary}[section]
\newtheorem{rem}{Remark}[section]
\newtheorem{prf}{Proof}[section]
\theoremstyle{remark} \numberwithin{subsection}{section}
\numberwithin{equation}{section} \numberwithin{figure}{section}

 

% MATH -------------------------------------------------------------------
\newcommand{\N}{{\mathbb{N}}}
\newcommand{\R}{{\mathbb{R}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\Q}{{\mathbb{Q}}}
%\newcommand{\C}{{\mathbb{C}}}
\newcommand{\p}{\partial}
\newcommand{\bR}{{\bf R}}
\newcommand{\bC}{{\bf C}}
\newcommand{\bZ}{{\bf Z}}
\newcommand{\bN}{{\bf N}}
\newcommand{\bQ}{{\bf Q}}
\newcommand{\bK}{{\bf K}}
\newcommand{\bI}{{\bf I}}
\newcommand{\bv}{{\bf v}}
\newcommand{\bV}{{\bf V}}
\newcommand{\cF}{{\mathcal F}}
\newcommand{\cA}{{\mathcal A}}
\newcommand{\cB}{{\mathcal B}}
\newcommand{\cC}{{\mathcal C}}
\newcommand{\cL}{{\mathcal L}}
\newcommand{\cX}{{\mathcal X}}
\newcommand{\cY}{{\mathcal Y}}
\newcommand{\cZ}{{\mathcal Z}}
\newcommand{\abs}[1]{\left\vert#1\right\vert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\seq}[1]{\left<#1\right>}
\newcommand{\norm}[1]{\left\Vert#1\right\Vert}
\newcommand{\essnorm}[1]{\norm{#1}_{\ess}}
\renewcommand{\to}{\longrightarrow}

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%%% Begining of the thesis
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{document}
\thispagestyle{empty}\pagestyle{myheadings} \markboth{ \rm \small{\textcolor[rgb]{1.00,0.00,0.00}{R}ajabhat \textcolor[rgb]{1.00,0.00,0.00}{M}ath. \textcolor[rgb]{1.00,0.00,0.00}{J.}
3(20xx)/ Author1 and Author2}} {\rm {\textcolor[rgb]{0.00,0.25,0.50}{title running head}}}
\setcounter{page}{109}
\noindent{\large{\bf Rajabhat Mathematics Journal (20xx) Vol. xx, xx - xx}}
\hfill[RMJ]

\vspace{0.1cm}
\hrule
\vspace{1mm} \hfill\small ISSN xxxx-xxxx
\vspace{1cm}
\begin{center}
{\Large\bf TITLE}\\
\underline{Author1 and Author2}\\
Address of Authors \\

\end{center}
\begin{abstract}
\indent
\par The paper must have abstract.
\end{abstract}
{\bf $^*$Corresponding Author:} Email\\
{\bf Keyword­:} xxxxxx, xxxxxx, \\
\hrule
\setmainfont{Angsana New}
\section{Introduction}
\hskip1cm This is the text of the introduction \cite{1}, \cite{2}, \cite{3}, \cite{1, 2, 3}

\section{Preliminaries}
\hskip 0.8cm Preliminary notes, materials and methods used in the paper.
\begin{rem}\label{remark1} We can easily check the following:
\par $(i)$ If $a,b \in \Bbb R , 0\leq a \leq b \mbox{ and } z_{1} \precsim z_{2} \mbox{ then } az_{1}\precsim bz_{2},\forall z_{1},z_{2}\in \Bbb C.$
\par $(ii)$ $0 \precsim z_{1} \precnsim z_{2} \Rightarrow |z_{1}| < |z_{2}|.$
\par $(iii)$ $z_{1} \precsim z_{2} \mbox{ and } z_{2} \prec z_{3} \Rightarrow z_{1} \prec z_{3}.$
\end{rem}

\begin{equation}\label{GKC}
d(Tx,Ty)\precsim \alpha d(x,Tx)+d(y,Ty),
\end{equation}
for all $x,y \in X$.

\begin{defn}\label{defnGCM} Let $X$ be a nonempty set, a mapping $D:X \times X \rightarrow \Bbb C$ is called a generalized conplex value metric space if it satisfies the following condition ...
\end{defn}


\begin{ex} Let $X=[0,1]$ and let $D:X\times X \rightarrow \Bbb C$ be the mapping define by for any $x,y \in X$
\begin{displaymath}\begin{cases}
D(x,y)=(x+y)i;x \neq 0 \mbox{ and } y \neq 0\\
D(x,0)=D(0,x)=\frac{x}{2}i
\end{cases}
\end{displaymath}
\end{ex}


\section{Main Results}
\hskip 0.8cm
\begin{prop} Let $X$ be a nonempty set and $D:X\times X \rightarrow \Bbb C$.
\end{prop}

\begin{thm} Let $(X, D)$ be a complete generalized complex value metric space,
\begin{proof}

\end{proof}
\end{thm}

\section{Acknowledgements}
\hskip 0.8cm The auther would like to thank...

\begin{thebibliography}{20}
\bibitem{1} A. Azam,F. Brain and M. Khan, \textbf{ Common fixed point theorems in complex valued metric space. }Numer.Funct.Anal. Optim. 32(3)(2011), 243-253.
\bibitem{2} S. Banach, \textbf{ Sur operations dams les ensembles abstraits et leur application aus equation integral.}Fund. Math. 3(1922), 133-181.
\bibitem{3} Y. Elkouch and E. M. Morhrani, \textbf{ On some fixed point theorem in generalized metric space.}Fixed Point Theory Applications. (2017). Doi 10.1186/s13663-017-0617-9.


\end{thebibliography}
\end{document}

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------